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The term graph will be used throughout this paper for edge~graphs 

without loops and multiple edges. A graph is called saturated with 

respect to a property P if the graph does not have property P, 

but it will have this property when any new edge is added to the 

graph. A great number of the extremal problems in graph theory can 

be formulated as follows: How many edges at most (or at least) can 

(or must) a graph with n vertices have if it is saturated with 

respect to a certain property? One of the most natural properties 

is that the graph contains a complete k-graph. The graphs satura- 

ted with respect to this property are called k-saturated graphs. 

The celebrated theorem of TURAN [1] establishes the maximum number 

of edges of a k-saturated graph. On the other hand, ERDOS, HAJNAL 

and Moon [2] calculated the minimum number of edges a k-saturated 

graph must contain. This second question could be answered for ge- 

neralized graphs [3], and by proving the conjecture of ERDÖS , HAJ- 

NAL, and MOON, for bipartite graphs, too (see [4J, [5], [6], and 

[7]). There is also a very natural conjecture for r—partite genera- 

lized graphs (where r—tuples are considered instead of the edges), 

but the proof breaks down even for r = 3, because a different 

concept of saturatedness is needed. It was this which partly moti- 

  

vated the concept of weakly saturated graphs which we shall intro- 

duce in the following and about which we shall prove some initial 

results, 

Consider a graph with n vertices and add all those edges which 

are the only missing edges of complete k-graphs (i.e. we add the 

edge a if there are k such vertices of the graph, that the 

graph contains all the edges spanned by these k vertices, sa- 

ving a). If by repeating this process a sufficient number of ti- 

mes the complete n-graph is obtained, the original graph will be 

called weakly k-saturated. Denote by f(n,k) the minimum number 
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of edges of these graphs. It is obvious that every k-saturated 

graph is also weakly k-saturated since all the edges are obtained 

already after the first step. Before determining f(n,k) for cer- 

tain values of k, we give another interpretation of the problem. 

Let us call a party shy of order s if two persons can be introduced 

to each other only by gathering s more members of the party, kno- 

wing each other and these two people, too. At least how many acquain~ 

tances are needed at the beginning of a party shy of order s, if 

the party consists of n people and we want that at the end every- 

body knows everybody else, provided all possible introductions are 

made? This number was denoted by f(n,s+2). 

| Zbeorem: If 35 k< 7, KS n then f(n,k) = (k-2)n - N. 

Obviously, this theorem is a sharpening of the theorem of ERDÖS , 

HAJNAL and MOON. 

Proof : Consider the following graph: take a complete (k-2)- 

graph and add n - k + 2 vertices, each of which is connected 

with the vertices of the complete graph (see Fig. 1). 

k-2 

n-k+2 Fig. 1 

This graph is k-saturated, consequently weakly k-saturated, and has 

(k-2)n - 5) edges. Thus, f(n,k) > (k-2)n - st) for all k2 3. 

The proof uses induction on n. If n=k, the theorem is trivial. 

If n>k, take a weakly k-saturated graph, G say, with minimum 

number of edges. It is sufficient to show that G has at least 

k- 2 more edges than a weakly k-saturated graph with n - 1 ver- 

tices. 
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Suppose that the vertex a has minimum degree, d say. As 

aod < f(n,k) < (k-2)n - (451), as 2k - 5. On the other hand, 

naturally k-2< d. Put d=k-2+p, then OS ps k-~- 3. 

The gist of the proof is the following: Add edges (which are the 

only missing edges of graphs spanned by k vertices) one by one 

and notice, when use is made of the vertex a. The use of a in 

G - a can be substituted by adding a certain edge to G-+=a at the 

very beginning. To prove the theorem it is sufficient to show that 

by adding edges at most p times to G-a, it is not necessary 

to use a any more to get a complete graph of G-— a, i.e. this 

new G -— a graph is weakly k-saturated. 

Let us call a complete graph of G-—a a clique if it is a maximal 

complete subgraph with at least k - 2 vertices. 

The term base will be used for the set of vertices connected to a 

at the different stages of the procedure. 

Adding edges to G means that if two complete subgraphs having at 

least K- 1 vertices meet in at least k- 2 vertices, then the 

whole subgraph spanned by these vertices can be completed. 

The following statements are immediate consequences of this fact 

and the definitions above, and describe those steps of the proce- 

dure of filling G with edges which may be effected by the omission 

of the vertex a. 

1. The base can be enlarged as 

follows: if a clique has at least 

k - 2 vertices in the base, then 

the new base will be the union of 

the clique and the base (Fig. 2). 

  
Fig. 2 
  

k-2 
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2. If two cliques of the base have exactly k- 3 vertices in cou- 

mon, then by using the vertex a, these two cliques can be united. 

If we want to omit a, this union can be obtained by adding to the 

original graph G-a an edge a, connecting such vertices of the 

two cliques which are not in the common part (Fig. 3). 

Fig. 3 

  

If after having added certain edges to the graph, the whole base is 

a single cligue, then G - a can be completed without the use of 

a, since the application of step 1 gives again a single clique and 

this implies that step 2 is not used any more. Thus, in order to pro- 

ve the theorem it would be sufficient to verify that after having used 

step 2 at most p times, the whole base will be a single clique. It 

is obvious that instead of adding edges to the graph, we may suppose 

that cliques are added, having at least k- 2 vertices in the base. 

This process must go on until the base contains n- 1 vertices and 

it is a single clique. 

As OS p= k-3 and kS 6, p#=QO, 1, 2 or 3. A clique will be 

called new if it is not the enlargement of a previous one (as in 

step 1) and they will be denoted by Cas Conese in the order of their 

appearance. 

a) If p= 0, then C. will contain all the vertices of the base. 

b) If p=, the first two cliques, C, and Cos have at least 

k~3 vertices in common, so they must be united according to step 2, 

and their union is the whole base. 

ce) If p= 2, then k=5 or 6. 

If the first two cliques, Cy and Cos have k- 3 common verti- 

ces then, by omitting an edge starting from a and adding a sui- 
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table edge to G -— a, a weakly k-saturated graph will be obtai- 

ned, which has the same number of edges as G, and for which al- 

ready p = 1. So it may be supposed that C, and Co have at most 

k- 4 vertices in common. Therefore they have exactly k - 4 verti- 

ces in common, thus covering the whole base. 

If k=5, i.e. if the cliques have at least 3 vertices, the third 

clique, 035 must have at least two common vertices with one of C., 

and Cos So they must be united according to step 2, and step 2 

will be used again to unite it with the remaining one. But this 

makes the whole base a single clique. 

If k= 6, the cliques have at least 4 vertices. In case C3 has 

three vertices in common with one of the first cliques, then the 

same situation arises as above. Otherwise by suitably numbering the 

vertices it can be supposed that the cliques are the following: 

(1,2,3,4), (1,2,5,6), (3,4,5,6) and certain additional vertices 

to any of the cliques. In this case the graph contains all the ed- 

ges of the complete graph spanned by the vertices 1,..., 6, and as 

this clique C has four vertices in common with each of the first 

three cliques, the whole base can be made a single clique, without 

using step 2 at all. 

a4) If p= 3, then k= 6, the initial base has 7 vertices, say 

4 ‚2 3,4,5,6,7. 

Just as in paragraph c) it can be assumed that C. and Cy have 

at most two vertices in common, and so they have one or two common 

vertices. 

If C., and Co have two vertices in common, we may suppose that 

they are (1,2,3,4), (3,4,5,6) and some additional vertices, and 

the base is enlarged with exactly these additional vertices. Now, 

if © has three vertices in common with one of the first two 

cliques, then we essentially get the case already excluded. 

Otherwise the third clique must contain two vertices like 1 and 5. 

But then (1,3,4,5) is also a clique which can be united according 

to step 2 with the first two cliques. The clique thus obtained, C 

say, contains all the vertices of the base, saving at most vertex 7. 

Finally, Cy must contain vertex 7 and must have at least three 
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vertices in common with C. In consequence their union must be for- 

med according to step 2, and this union will be the whole base. 

If 0, and Cy have one common vertex, then C4 must have at 

least two vertices in common with at least one of them. But then 

the order of the cliques and the base itself can be changed in such 

a way as to obtain a previously discussed case. For instance, if 

C, = (1,2,354,8,9,10), Cy = (4,5,6,7,11,12), and 0, = (8,9,11,12), 

then take (6,7,8,9,10,11,12) as the new base and C4 = 035 

C4 = Coy C3 = Cy. This can be done since after having added these 

cliques, the base will be the same as after the original start. This 

completes the proof of the theorem. 

For k= 4, 5, 6 we could not determine the set of extremal graphs, 

but a fairly large number of extremal graphs can be given as follows. 

If n=k, the only extremal graph is the graph from which one ed- 

ge is missing. If G is an extremal graph of n-1 (2k) verti- 

ces, then add a vertex to G and join this vertex to any k-2 of 

the vertices in G. The graph obtained will be an extremal graph 

with n vertices (Fig. 4). We do not know whether these are the 

Fig. 4 

only extremal graphs or not. If k= 3, it is obvious from the 

proof of the theorem that these are the only extremal graphs (the 

trees), since in this case p= 0. 

Though the discussional method, which was applied in the proof, can 

not be carried out in the case k 2 7, it seems to be likely that 

f(n,k) = (k-2)n - es) even for some further small values of k. 
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